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G. I. Taylor’s solution in 1910 for the interior structure of a weak shock wave is, with 
appropriate generalization, an essential component of weak-shock theory. The 
Taylor balance between nonlinear convection and thermoviscous diffusion is, how- 
ever, endangered when other linear mechanisms - such as density stratification, 
geometrical spreading effects, tube wall attenuation and dispersion, etc. - are 
included. The ways in which some of these linear mechanisms cause the Taylor shock 
structure to break down when a weak shock has propagated over a large (and in some 
cases quite moderate) distance will be studied. Different forms of breakdown of the 
Taylor shock structure will be identified, both for quadratic (gasdynamic) non- 
linearity and also for cubic nonlinearity appropriate to transverse waves in solid media 
or electromagnetic waves in nonlinear dielectrics. From this a description will be 
given of the fate of a nonlinear wave containing a pattern of weak shock waves, as it 
propagates over large ranges under the influence of linear and nonlinear mechanisms. 

1. Introduction 
G. I. Taylor turned his attention early to issues of significance in fluid mechanics. 

His second scientific paper (the first, in 1909, was on ‘Interference fringes in feeble 
light ’) was published by the Royal Society in 1910 under the title ‘The conditions 
necessary for discontinuous motion in gases’. In  this brief paper, Taylor not only 
showed simply that gasdynamic compressions were needed to produce near- 
discontinuities, and that molecular diffusivity was then sufficient to  sustain a 
near-discontinuity of permanent form, but he gave the hyperbolic tangent description 
of the interior of a weak shock wave that, with numerous generalizations of detail 
but not of spirit, is now well known as the Taylor shock structure function. The 
essence of that structure is a localized steady-state balance between nonlinear 
convection and thermoviscous diffusion. Outside the thin shock regions the balance 
is upset. A time-dependent conflict takes place between these nonlinear steepening 
and linear ‘easing ’ mechanisms (involving also other mechanisms, such as wave-front 
area variation, which are generally absent within the shocks) - a conflict analysed 
and described in detail in the classic paper ‘Viscosity effects in sound waves of finite 
amplitude’ contributed by Sir James Lighthill to the G. I. Taylor 70th Anniversary 
Volume (Batchelor & Davies 1956). 

Lighthill’s paper may be regarded as initiating the research field of Nonlinear 
Acoustics. Among the many seminal ideas of this paper are (1) the derivation of the 
model equation known as Burgers’ equation through a rational approximation 
scheme (though, characteristically, Lighthill chose not to present this in formal 
notation), this equation having as its travelling wave solution the Taylor shock of 
tanh form, (2) a proof from the Hopf-Cole exact linearization of Burgers’ equation 
that the Taylor structure emerges as the discontinuity-bridging function in flows with 
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strong temporal variation outside the shocks, and (3) a sketch of the extent to which 
the Taylor structure would still describe the shocks of a flow with strong spatial 
variation (due, for example, to wave-front spreading or contraction, or to density 
stratification in the ambient medium). Lighthill’s suggestion was that those variations 
could be locally accommodated by suitable variation of the amplitude and width 
parameters of the plane-shock solution, a suggestion that we can confirm here, at any 
rate for moderate ranges of propagation. 

Our principal aim, however, is a study of the behaviour of a weakly nonlinear wave 
pattern, containing weak shock waves, after propagation over very large ranges. 
Here the Taylor structure, valid for moderate ranges, loses its relevance in one of 
several possible ways. 

(i) The shock may become rather thick, comparable in thickness with the overall 
wave scale. 

(ii) It may become much thinner than a steady-state Taylor shock of the same 
strength. 

(iii) It may be displaced by diffusive effects far from the location assigned to it 
by ‘weak-shock theory’ (Whitham 1974, p. 31). 

(iv) The Taylor solution, regarded as the first term of an asymptotic expansion, 
may lose its dominance over the second and higher terms. 

(v) The lossless nonlinear solution outside the shocks may become invalid, thereby 
invalidating the shock description. 

(vi) The Taylor-shock solution may itself develop an internal singularity at some 
finite range. 

These six ways in which the weak-shock-theory picture (of a weakly nonlinear 
dissipative wave as composed of nonlinear non-dissipative ‘ simple-wave ’ regions 
separated by thin shock waves, with Taylor structure, located at those positions for 
a discontinuity which would conserve mass and momentum) can break down have 
been identified in a number of recent studies (Crighton & Scott 1979; Scott 1981b; 
Nimmo & Crighton 1986; Lee-Bapty & Crighton 1986a, b ) .  In some problems several 
such non-uniformities arise at the same typical range, while in others they occur 
sequentially if a t  all. Other sources of large-range non-uniformity may of course arise 
in flows with dissipative mechanisms other than distributed thermoviscosity (by 
which we mean dissipation associated with molecular diffusion of heat and momentum, 
characterized by coefficients of thermal conductivity and viscosity). For example, 
dissipation associated with a relaxing degree of freedom (principally the vibrational 
mode of nitrogen in atmospheric air) is often dominant in unbounded flows, while 
attenuation and dispersion in Stokes layers adjacent to tube walls is often dominant 
in confined flows, while there are many other non-dissipative linear mechanisms 
which may lead to spatial variation. In  this paper we are concerned solely with 
thermoviscous dissipation ; some treatment of the corresponding problems for a 
relaxing gas is given in Crighton & Scott (1979). 

With regard to the first possibility (i) mentioned, it is clear that the near- 
discontinuity description no longer holds, that a ‘global non-uniformity ’ has arisen, 
and that a new description of the whole wave is called for. On the second, a region 
thinner than the steady Taylor width for a given shock strength must be governed 
by linear diffusion rather than the Taylor-Lighthill balance - as first apparently 
noted by Naugol’nykh (1973). An error function replaces Taylor’s tanh, with a 
different width law and the possibility of a global non-uniformity later on. For the 
third, Lighthill (1956, equations (159) and (212)) shows that for plane flow viscous 
effects can cause the ‘centre’ of a Taylor shock to drift through the waveform far 
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from the weak-shock-theory location (which generally displaces the shock too far) ; 
and the effect is more pronounced for cylindrical and spherical waves. However, we 
have not yet found a case in which this ‘translational non-uniformity ’ is not accom- 
panied by another non-uniformity, local or global. The fourth source of non- 
uniformity of weak-shock theory was first identified by Crighton & Scott (1979). If 
the flow outside the shock varies too rapidly, then the Taylor-Lighthill balance can 
no longer be maintained. Then, if this is the only non-uniformity a t  the range con- 
sidered, the Taylor shock gives way to  an evolutionary (non-steady-state) shock, 
this in turn generally giving way a t  longer ranges to a linear error-function shock, 
and possibly to a global non-uniformity at still greater ranges. When the fifth type 
of non-uniformity arises, the shocks again turn out to be linear error functions, but 
outside them the flow is no longer nonlinear, changing instead only because of 
linear geometrical constraints. The sixth possibility applies only to problems in- 
volving cubic or higher nonlinearity, such as, for example, those involving shear or 
torsional waves in solids, or electromagnetic waves in nonlinear dielectrics. There is, 
for such problems, also a Taylor shock structure - but now an internal singularity 
can develop a t  finite range, together with indeterminacy of the flow outside the 
shocks, unless a certain relation is maintained between the signals on either side of 
the shock (Lee-Bapty & Crighton 1986a). This leads to completely new features, 
unavailable to gasdynamics, such as the refraction of characteristics passing through 
a shock, and slow algebraic matching of the shock to the flow on one side with rapid 
exponential matching on the other. These features would all be missed if i t  were 
tacitly assumed that a smooth Taylor-like transition could always be found between 
two arbitrary signal levels; i t  could for a gasdynamic shock, but not generally for 
higher-order nonlinearity. 

We shall not go into details here on the specific functional forms that reveal the 
various non-uniformities. These details are given in the papers cited and in further 
papers dealing with the propagation of single hump disturbances and with the 
propagation of cylindrical N-waves through a stratified atmosphere (the sonic-boom 
problem). The aim here is rather to present some overview and perspective - essential 
in nonlinear problems, where generality is not achieved by superposition and where 
it is not clear whether results for a particular initial condition or a particular linear 
mechanism exemplify broad classes of generally similar behaviour. 

Section 2 describes briefly the genesis of the model equations - generalized or 
modified Burgers’ equations - whose (local) travelling waves are Taylor shocks. 
Exact solutions are known only for the ordinary plane Burgers’ equation, and we 
therefore attack the others with asymptotic techniques backed up by numerical work 
by others and ourselves. Section 2 therefore gives appropriate dimensionless forms 
and small parameters for the problems most completely solved to  date, involving 
comparable weak nonlinearity, thermoviscous diffusion and geometrical area varia- 
tion of the wave front. Section 3 then gives the classification of results for two 
particular initial wave forms, the N-wave and the sinusoid, for all area variations. 
Two aspects are of particular interest. The first concerns the types of non-uniforqity 
that arise in the ‘lossless waves separated by thin Taylor shocks’ description and of 
the new balances that take over following a non-uniformity. The second is the matter 
of the ultimate behaviour of the wave - whether weak-shock theory is valid to 
indefinitely large ranges, or whether, a t  the other extreme, the wave subsides into 
‘old-age’ decay governed by purely linear mechanisms. Section 4 discusses briefly the 
evolution of waves under cubic and higher modifications of Burgers’ equation, and 
$5  gives some credence to the asymptotic structure proposed by making qualitative 
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and quantitative comparisons with published numerical calculations. Some of the 
myriad ways in which this programme of asymptotic analysis of model equations of 
nonlinear acoustics - essentially originated by Taylor and Lighthill - could be 
extended are mentioned in $6. 

2. Model equations 
We consider disturbances to a therrnoviscous fluid whose ambient state is one of 

homogeneous equilibrium with constant values of the thermodynamic variables in 
standard notation. The -disturbances are assumed to propagate, with negligible 
reflection, in the direction of increasing x ,  where x is a space coordinate along a 
physical horn or ray tube, and all fluctuations are assumed uniform over a section 
of the tube or horn. A motion of velocity amplitude U, at station x = x, generates 
the motion in the fluid x 2 x,, 0-l is the typical timescale of the imposed motion, 
k-’ 0 = a, 0 - l  is the typical lengthscale of a linear acoustic motion. Nonlinear acoustics 
deals with motions for which the parameters Uo/a,, k,S/U,  and ( k ,  L)-l are small 
and comparable and there is interest in propagation ranges of order ( U ~ / U , , ) ~ ~ - ~  or 
larger and spatial gradients of order (U,/k,S)  times the maximum gradient in a 
purely linear wave. Here U,/a, is a source Mach number; k,6/U0 is an inverse 
Reynolds number based on U,, the wavelength k;l, and that combination 6 of the 
diffusivities (the ‘diffusivity of sound ’ - Lighthill 1956) relevant to acoustic wave 
damping; and L = Id/dx lnA(x)l-l is a length characterizing the rate of change of 
ray-tube or wave-front area A ( x )  (in most cases L may be identified with x,). 

A multiple scales expansion of the gasdynamic equations, with the usual suppression 
of secular terms, then readily leads, on reversion to physical variables, to the 
equation au au d s a Z u  

at ax dx 2 a x ~  -+ (a, + 1) u)  -+ $, u - In ~ ( x )  = -- 

for the velocity fluctuation. This holds uniformly, as the small parameters vanish 
independently, to times O(7-l ~ l ) ,  where 7 is the smallest of the three small 
parameters; see Lighthill (1956), Leibovich & Seebass (1974), Rudenko & Soluyan 
(1977) and Crighton (1986) for derivations a t  varying levels of formality. 

For plane flow (2.1) is the ordinary Burgers’ equation which is linearized to the 
diffusion equation 

( 2 . 2 )  
a$ a2$ _ -  - $6- 
at ax2 

by the Hopf-Cole transformation (Backlund transformation) 

Lighthill (1956), Whitham (1974) and Rudenko & Soluyan (1977) give extensive 
discussion of features of the nonlinear plane wave evolution revealed by the 
Hopf-Cole transformation. For the generalized Burgers’ equations (GBE’s) repre- 
sented by (2.1) with A ( x )  =k constant i t  has been proved (Nimmo & Crighton 1982) 
that there is no Biicklund transformation mapping the solutions of (2.1) onto 
solutions of the same equation, of the corresponding linear equation, or onto any 
other GBE of the class (2.1). Asymptotic and numerical methods are therefore the 
only tools currently available. 

The linear terms on the left of (2.1) express the fact that  in the geometrical 
acoustics high-frequency limit the quantity Ai(x) u ( x ,  t )  is constant on the linear 
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characteristics dx/dt = a,. For the important cases of cylindrical and spherical 
waves, A = (x,/x) and ( X , / X ) ~  respectively, and the generalizing linear term isja0u/2x 
with j = 1, 2 respectively. Various transformations of (2.1) are useful at particular 
stages of the motion, of which the most important throws the whole of the left side 
into plane-wave form (and thereby allows the lossless equation, with S = 0, to be 
integrated by characteristics) at 
which depends strongly on time, 
according to 

u = u, f ( w t )  

the expense of introducing an effective viscosity 
or range from x,. Define dimensionless variables 

a t x = x O ,  8 = w  t---- ( x ~ o x o j ~  1 

I 
and then the wave evolution is governed by 

with q(0, 0) = f (S) .  
For cylindrical waves 

and for spherical waves 

The GBE (2.5) does not follow exactly from (2.1), but has precisely the same formal 
validity as (2.1). In  (2.1) the nonlinear, geometrical and diffusive terms are all 
assumed to be locally small, and formally equivalent expressions for them may be 
obtained using the local balance au/at x -a, au/ax. For further details see Crighton 
(1979, 1986). 

Our interest is in the evolution over arbitrarily large ‘ranges’ Z (or the full range 
of 2 corresponding to x, < x < 00) in the fully nonlinear limit e+O.  As noted earlier, 
however, the problem contains three small parameters, of which one is E and a second, 
U,/a, say, has been used to define the slow space variable 2. The third is the product 
of a small Mach number U,/a, and a large Helmholtz number k,x,, 
2, = +(y + 1)  ( U,/a,) (k, x,). This may be taken as fixed, corresponding to letting the 
diffusivities decrease with other parameters held fixed, and would be appropriate to, 
say, sonic-boom propagation in the atmosphere (provided density variations were 
taken into account also). Applications in underwater acoustics often correspond, 
however, to considerable variations of the drive level U, with fixed values of the other 
quantities, and in that case the limit s+O must be taken with sZo fixed, €2, = ax, 
being the product of the small-signal attenuation coefficient a = Sw2/2a,3 with x,. 

The travelling-wave solution to (2.5) in the plane-wave case G(2)  = Go, constant, 
is 

(V+- V-)  (e+ V Z )  [ 4sG0 
q = V++( V+- V-)  tanh 

increasing from V- a t  0 = -00 to V+ at 0 = + co, travelling a t  speed 
de/dZ = - V = -$( V+ + V-),  and of scale .Go/( V+- V-).  This is G. I. Taylor’s (1910) 
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solution for the structure of a weak thermoviscous shock. For G(Z)  not constant there 
is no travelling wave of permanent form, but (2.8) still holds as the leading term of 
an asymptotic expansion in regions of thickness lt9-6,(Z)l = O(E) around particular 
phase locations 8JZ) corresponding to the discontinuities of weak-shock theory ; and 
then V+ and Go have their local values V+(Z)  and G(Z) .  

In areas of mechanics other than gasdynamics the coefficient of the quadratic 
term wau/ax in (2.1) may vanish identically because of symmetry requirements, as 
in the case of shear or torsional waves in isotropic elastic solids or electromagnetic 
waves in nonlinear dielectrics (see Nariboli & Lin 1973; Sugimoto, Yamane & 
Kakutani 1982 ; Gorschkov, Ostrovsky & Pelinovsky 1974 ; Lee-Bapty & Crighton 
1 9 8 6 ~ ) .  There are also hydrocarbon and fluorocarbon fluids for which this coefficient 
vanishes along a curve in a thermodynamic space, in the neighbourhood of which 
expansion and compression shocks are both possible. References are given by Cramer 
& Kluwick (1984). In such cases, a modified (cubic) Burgers' equation replaces (2.1) 
provided the dissipative mechanism is diffusive and dispersion negligible, so that a 
solid medium must be viscoelastic, while atomic resonances must be avoided in the 
nonlinear optics case to minimize dispersion. Detailed derivations are given in the 
references cited. The dimensionless equation, in variables corresponding closely to 
those in (2.5), is 

(2.9) 
- + q 2 -  aq = e-  a2q 
az ao ao2 

for plane motion. The Taylor shock solution is 

q =f(t), 5 = 0-80- V Z ,  

where -=I 5 df 
3E (f"3Vf+A) 

(2.10) 

and the integration is between adjacent zeros of the cubic. If the zeros, fi, f, and 
- ( f, + f,), are distinct then f approaches one of them exponentially as 5++ co and 
an adjacent one exponentially as (+ - co. Iff, = f2 then the approach to f, is only 
algebraic. Iff  -to as (++ co then f can be found in simple form, 

In this case there is a non-singular transition 

a = (3V)t (2.11) 

to an arbitrary specified level as 
I -  

(+- co, and such a 'head shock poses no difficulty when incorporated locally into 
a description in which the signal a behind the shock is a function of 2. The difficulty 
arises in the more general case represented by (2.10). When this is used locally to 
resolve the fine structure of a discontinuity, the zeros fi, f 2  and - ( f, + f,) are functions 
of Z determined by the initial data and the solutions of (2.9) with E = 0, which holds 
outside the shocks. Then, even though initially f,(Z) and f,(Z) may be adjacent zeros, 
with an acceptable Taylor shock linking them, it turns out that the third zero 
coincides with f,(Z), say, a t  some finite range Z,, and would for Z > 2, move between 
fi and f, and lead to a non-integrable singularity within the shock itself. How this 
must be avoided will be explained shortly. It is clearly an important feature of the 
nonlinear wave mechanics of dissipative systems with nonlinearity of cubic or higher 
order, and seems not to have been addressed except in the recent work of Lee-Bapty 
& Crighton ( 1 9 8 6 ~ ) .  Standard discussions of shock fitting for general nonlinearity 
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Q’(q)  aqla8, say, (cf. Whitham 1974, pp. 33, 34), assume that conditions outside the 
shock can be determined in the way so familiar in gasdynamics - from the initial data 
via characteristics - and will pose no threat of singularity for the shock itself. For 
cubic Q(q)  i t  can be shown explicitly that the situation is in general quite different. 
Lee-Bapty & Crighton (1986a) show that coalescence of zeros for a unit N-wave takes 
place a t  2, = 10, and a t  a range 2, = 9.601 for a unit sinusoid as initial data. Section 
4 below describes how the dilemma for Z > 2, is resolved. 

Anisotropy of the medium is a common feature and leads to interesting model 
equations and wave structure. Consider, for example, an isothermal atmosphere with 
exponential variation of the mean density with height z and scale height H .  Then 
if r is the radial coordinate and z = r cos 8, the model equation generalizing (2.1) for 
cylindrical or spherical waves to take account of density stratification is 

at 

where So is the diffusivity at z = 0 .  The evolution takes place along rays labelled by 
8, and i t  is quite possible to have, a t  given range r ,  shock-free flows for one range 
of 8, flows with fully developed Taylor shocks for another range of 8, and flows 
decaying in linear old age for yet another range of 8. Spherical wave evolution, j = 2 
in (2.12), was discussed in Lee-Bapty & Crighton (1986b) with sinusoidal wave 
propagation in the ocean in mind. Cylindrical wave propagation, with j = 1 and an 
N-wave at r = ro, models the sonic-boom problem in the atmosphere, and will be 
discussed elsewhere. 

The remainder of this paper discusses only isotropic media, where the generalized 
and modified Burgers’ equations (2 .5)  and (2 .9)  are appropriate. 

3. Wave-front area variations 
We outline here a typical matched-expansion approach to the solution of (2.5) as 

E + O  (with 2, = O(1) or eZO = O ( l ) ) ,  stating the types of non-uniformity that can 
arise in the weak-shock-theory description valid for moderate ranges, sketching the 
evolution following different types of non-uniformity and, following Nimmo & 
Crighton (1986), giving a classification of various scenarios and routes to old-age 
decay for the two important initial signals of N-wave and sinusoidal form. 

3.1. The lossless expansion 
For O(1) values of 8, 2, assume 

Q - qo(8 ,Z)  + EPl(8,Z) + . . . 
Then qo is a lossless simple wave, satisfying 

with implicit characteristic solution 

Po =A$), 4 = S+Zf($). 

Corrections q l ,  q2.  . . . can also be found, and show in some cases that eq2 - q1 for large 
2 (see later). The lossless expansion is invalid in the embryo-shock region, in which 
a triple-valued qo is about to be produced and diffusive effects are important, and 
invalid in the thin shock regions which provide a rapid transition from one branch 
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to another of the multi-valued wave form described by qo for 2 > 2, (shock-formation 
range). In  the embryo-shock region the shocks have not yet developed their 
steady-state Taylor form and the leading term of an expansion in ‘embryo-shock 

satisfies 

(3.3) 

(3.4) 

if infinite gradient in qo is first produced at range 2, and phase 8,. Equation (3.4) 
is the plane Burgers’ equation, and a solution can be found which matches qo for 
2 < 2, and for Z > 2, outside the shocks, and matches (3.7) below within the shocks 
(see Lighthill 1956, equation (171), and Crighton & Scott 1979, equation (4.58)). The 
solution in this region is the key to some important later details. Outside the shock 
regions, the lossless qo generally continues to be valid well beyond shock formation, 
and between the shocks describes a series of straight-line ramps with slope - 2-l. 

3.2. Steady-state Taylor shocks 
Assume that the triple-valued solution qo (for 2 > 2,) is made single-valued by a 
region of rapid change - a shock - around 8 = 8,(2), say, where 8,(Z) is to be 
determined by matching. The shock thickness turns out to be O(e) ,  so that 
B* = (S-O,) /e  and 2 are suitable ‘shock variables’, with a shock expansion 

q(e*, z, €1 - q,*(e*, 2) + eq:(o*, 2) + . . . , (3.5) 
with matching of q$ as 8*+f 00 to the limiting values q+ of qo as 8+ 8, f . The function 
(q,* + 8;) satisfies 

- 

a Z u  au 
-UP = G(2)- (3.6) ae* ae*2> 

reflecting a local Taylor-Lighthill balance, with geometrical area variations appearing 
only parametrically in G ( 2 ) .  Solving for u as h ( Z )  tanh {h(Z)[O* - B,*(Z)]/2G(Z)}, where 
h and 13; are functions of integration, and performing the matching leads to 

which is locally of precisely the Taylor form (2.8), with a shock propagation velocity 
B;(Z) = - V ( 2 )  = - i (q+ + q-) which is the discontinuity velocity of weak-shock 
theory. 

Observe, however, the following. The shock width is of order eG(Z) / (q+-q- )  and 
may not be uniformly O(e)  for large 2. Second, q,* is antisymmetric about a centre 
at 8,(2) + eO,*(Z) in which 8,(2) is the weak-shock-theory discontinuity location and 
eO,*(Z) is Lighthill’s ‘shock displacement due to diffusivity ’. The function O,*(Z) needs 
second-order matching, of qo +eql to q,* + eq:, for its determination in general, though 
sometimes it can be efficiently calculated from some integral conservation principle, 
while in other cases symmetry conditions show that 8,*(2) must have a fixed value. 
When 8,*(Z) is not constant i t  is frequently found that &:(Z) % BJZ) as 2+ 03 ; for 
N-waves, 8,(2) - 24, while e,*(Z) - 24 In 2, 2% and Z-?eZ for plane, cylindrical and 
spherical waves respectively. Shock displacement due to diffusivity is therefore a 
possible source of non-uniformity at large 2. More important, however, is the 
non-uniformity revealed by the correction eq: to Taylor’s q,*. A general expression for 
q: can be found, but is too lengthy to write down here. The essential point is that 
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it involves not only the quantities q+(Z) just outside the shock a t  range 2 and the 
function G(2)  but also their derivatives, and therefore the idea that the Taylor- 
Lighthill balance of (3.6) must be upset if wave-front area variations cause too rapid 
a change just outside the shock can be quantified by looking a t  the ratio eq:/q$ for 
large 2. When this ratio becomes 0(1), Taylor’s description of the shock interior 
certainly fails, though what replaces it depends on whether this is the first non- 
uniformity to arise, or whether another arises a t  the same typical large 2. 

3.3. Weak-shock theory 
At this point it may be convenient to state exactly what is meant by this term. In  
weak-shock theory, one solves the lossless equation (3.2) with jump discontinuities 
(only compressions are ever needed - Taylor 1910) within intervals of phase 8 where 
qo is triple-valued. The discontinuities are inserted in accordance with the ‘ equal-areas 
rule’ with respect to either the initial wave profile f ( 0 )  or the evolved profile q(0, 2) 
(Lighthill 1956; Whitham 1974) and the analytical expression of this is the formula 
0i.Z) = --2j(q++q-), a differential equation for the shock path. It is tacitly assumed 
that a smooth transition could be found to replace the discontinuity if a suitable 
dissipative mechanism were introduced, and that if diffusivity is that mechanism 
then the transition is of steady Taylor form, implying a precise knowledge of the 
shock width for a given strength. From what has been said above it is evident that 
weak-shock theory must frequently fail to hold uniformly for large ranges 2, and that 
it can fail in a number of different ways depending on the initial wave profile and 
on the area function G(2).  

3.4. Non-uniformities in weak-shock theory 

Weak-shock theory is predicated upon the following assumptions : 
( A )  the shock thickness is small compared with the overall wave scale; 
(B)  the shock displacement due to diffusivity is a small fraction of the weak- 

(C) Taylor’s solution is valid at leading order within the shocks; 
( D )  the lossless flow outside the shocks is a correct leading-order description (i.e. 

eq1 4 qo, where qo is given by (3.2)); 
( E )  for cubic and higher-order nonlinearity, no singularity must arise within the 

shock itself. 
We know of no case in which (B)  is violated first, though in many cases it is violated 

a t  the same typical range as (C) and we shall therefore include it within (C). Condition 
( E )  will be set aside until $4. 

The simplest case (apart from that of uniform validity of weak shock theory) arises 
when ( A )  and (C) are simultaneously violated (and then ( D )  is also). In  this case we 
have a global non-uniformity in which fine shock structure has been lost and nothing 
of weak shock theory is true anywhere on the wave for 2 > some large Z,(s). In  
appropriate scaled variables q, z and for all 0 it  is found that following such a 
non-uniformity qo satisfies the full generalized Burgers’ equation 

shock-theory displacement ; 

where H ( Z )  is close to G(2).  As z+O, qo must match the lossless solution qo outside 
the shocks and the Taylor solution q$ within them. Equation (3.8) states that linear 
evolution under geometrical constraints, nonlinear convection and diffusion are 
comparable across the whole wave. With the exceptions of plane waves, and of a 

21-2 
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similarity solution for the cylindrical version of (3-.8), with H(Z) = z (whose signifi- 
cance is discussed by Scott 1981a), no solutions at all of (3.8) are known. It can be 
argued, however, that as z+ 00 the nonlinear term becomes small everywhere (this 
follows immediately from a formal scaling), and the wave subsides into old age under 
linear dynamics. The functional form of this decay can often be found ; for sinusoidal 
f(0), Po - A ( Z )  sin (0-8) where A’(2) = - H ( Z )  A ( Z ) ,  and the old-age decay is pinned 
down aside from a purely numerical amplitude factor in A @ )  and the phase constant 
8. Nothing short of the exact solution to (3.8) (with matching a s Z +  O),  by analytical 
or numerical means, can provide these numerical factors. Much is gained from this 
approach; all the scalings are determined, as are the ranges at which changes in wave 
character occur, and the numerical problems are reduced to solving (3.8) once, 
instead of the original equation for each E .  

Suppose now that (C) is violated before ( A )  or ( D ) ,  at Z - Z , ( E ) .  Then the shock 
is no longer a Taylor shock-but it is still a shock in the sense of a narrow region 
outside which lossless nonlinear dynamics goes on. New scaled variables q,  Z and 8 
are now needed, in terms of which, not surprisingly, a full generalized Burgers’ 
equation (3.8) holds - but now only in a narrow region, following this local non- 
unqormity. The shock has become evolutionary, rather than steady state. The 
evolutionary solution qo must again match the Taylor shocks and the lossless solution 
as z+O for appropriate scaled values of 0 - but the essential point is that it  must 
continue to match the lossless solution as gincreases to large positive values, because 
the lossless solution is valid indefinitely into the ‘future’ (z++ X I )  outside the shock. 
As z++ 00, the nonlinear term in (3.8) becomes small, and the solution q,, tends to 
an error-function solution of the linear version of (3.8) (this was proved in the 
Appendix to Crighton & Scott 1979). The amplitude of this linear shock is completely 
fixed by the matching to qo which, we emphasize again, holds even as Z-t 00. 

In  a sense, weak-shock theory has not yet been violated, though the shock 
structure is far from Taylor-like. But one must now ask of the linear evolutionary 
shock the questions earlier addressed to the Taylor shock - and one finds, typically, 
that the linear shock thickens, and violates condition ( A ) ,  at some typical range 
Z,, ( E ) .  This second long-range non-uniformity is global, but fortunately, involves 
only the linear form of (3.8), in scaled variables io and g, across the whole wave (all 0). 
A solution can be constructed, matching the lossless solution and the linear 
error-function shock (for example, by taking these as initial values for the linear form 
of (3.8) and letting Z++ 00) ,  and in this case all details of the old-age decay, including 
the amplitude coefficient, can be determined without recourse to numerics. We have, 
in particular, determined the old-age decay of N-waves and sinusoidal waves 
completely in all cases where the local-followed-by-global non-uniformity scenario 
applies, these cases including freely spreading spherical waves (Crighton & Scott 
1979; Scott 1981 b ;  Nimmo & Crighton 1986). 

Most cases are covered by these two main routes to old age. Exceptions are the 
following. A local non-uniformity leading to an evolutionary and, subsequently, a 
linear error-function shock need not be followed by a global non-uniformity. The 
error function can remain thin (it is in fact thinner than the Taylor shock of the same 
strength, and therefore is governed by linear dynamics, as suggested by Naugol’nykh 
1973), but a non-uniformity may arise in the outer solution a t  still larger range, q1 
becoming comparable with qo. When this happens the appropriate replacement go for 
the simple wave qo is found to satisfy the linear lossless equation 

(3.9) 
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with matching as Z-zO to the nonlinear simple wave qo. Thus the variation in the 
outer flow is entirely associated with linear wave-front area variation. Inside the 
shocks we also have linear dynamics - but the overall behaviour, although governed 
by linear equations everywhere, is hardly of the kind that one would associate with 
‘old age’. Consider, for example, f(0) = sin0 for the initial condition. Then at large 
physical ranges x for which the simple wave description still applies, qo is a periodic 
sawtooth, decreasing in amplitude as Z-l, 

7c--8 
Qo - 7 (0 < 0 < 27c). (3.10) 

In  circumstances where a non-uniformity arises in this description, 2 actually tends 
to a finite value 2, as the physical range x tends to infinity, and therefore qo tends 

40 ----, (3.11) 

which satisfies (3.9), and (3.9) in turn must follow from (2.5) if z = (Z,-2)/ea for 
any a > 0. In  terms of u we thus have a sawtooth with amplitude varying as A-i(x), 
the discontinuities resolved by linear error-function shocks whose thickness remains 
small to arbitrary large x. 

Second, the evolutionary and then linear shock may not thicken, and neither need 
a non-uniformity subsequently arise in the outer solution. Then the nonlinear simple 
wave ((3.10) for sinusoidal waves) continues to infinity, with linear shocks. 
Weak-shock theory has not been violated, but the shock structure is not Taylor’s. 
The shock is thinner than Taylor’s, and therefore linear. However, its fixed thickness 
means that linear dynamics never takes over everywhere, and the wave never 
becomes a linear ‘sound wave’. The possibility of linear shock dynamics was first 
raised by Naugol’nykh (1973). He, however, had no systematic way of examining all 
the non-uniformity scenarios that are possible, and was unable to quantify the idea 
to the extent now demonstrated here, nor was he able to relate it to other sources 
of non-uniformity in weak-shock theory. 

to a frozen sawtooth 7c--8 

2, 

3.5. CEassi$cation 
A detailed classification of the sequence of non-uniformities for geometrical area 
variations coupled with quadratic nonlinearity and thermoviscous diffusion is given 
in Nimmo & Crighton (1986). The following is a simple statement of the essentials 
for sinusoidal and N-wave initial conditions ; one-signed single-pulse problems raise 
other issues not considered here. 

Sinusoidal waves 

(a )  If A(x) decreases a t  least as fast as exp (-ax) for some a > 0, then there is no 
non-uniformity a t  large x. Weak-shock theory holds to x = 00 and the shocks retain 
Taylor structure. 

( 6 )  If A(x) decreases less rapidly than exp (-ax) for any a > 0, or increases no 
more rapidly than xA for A < 2, the first and only non-uniformity is of the gross or 
global kind. All effects contained in (2.5) become important everywhere (in 0) over 
ranges 2 - Z,(e). At any asymptotically larger 2 the wave becomes weak and decays 
into linear old age. 

( c )  If A(x) diverges as x2 or more rapidly, the first non-uniformity is localized in 
the shocks, which become evolutionary, and governed by (3.8) with H ( 2 )  fully 
variable. The shocks then assume a linear error-function form, while the lossless 
solution persists outside them. A shock will now thicken provided A’/A+ 0, and will 
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provoke a global non-uniformity in which linear dissipative dynamics operates over 
the whole wave as old age sets in. If A’/A- t /3 ,0  < p ,< w, no shock thickening takes 
place. Instead, a non-uniformity arises in the lossless solution. Outside the shocks 
(and already in them) nonlinearity is small and the wave has a frozen form in 2, the 
evolution of u ( x ,  t )  being dictated solely by area variations. Inside the shocks we have 
linear diffusive decay. 

Scenario (a) is exemplified by the horn of exponentially decreasing section, ( b )  by 
cylindrical waves ( A  = 1). Scenario ( c )  with A’/A+O is exemplified by spherical 
waves ( A  = 2)  and with A ’ / A + P  by the exponentially diverging horn. 

N-waves 

The situation is similar, with one significant difference. Suppose that A ( x )  increases 
faster than & for any A. Then the evolutionary shock produced by the localized 
non-uniformity will thicken if A ’ / A  -to and provoke a global non-uniformity as for 
sinusoidal waves. If, however, A‘/A+tO, no non-uniformity is this time to be found 
in the lossless solution (where p = po plus exponentially small terms, rather than the 
algebraic terms q,, etc.). The nonlinear lossless solution is valid indefinitely but the 
shocks are thin and have error-function rather than Taylor form. Naugol’nykh’s 
shock-thickness criterion applies, but old age does not follow ; the wave remains 
nonlinear outside linear shocks, and weak-shock theory remains valid. 

4. Higher-order nonlinearity - Modified Burgers’ equation 
Here we consider the Taylor type of shock structure for cubic and higher-order 

(polynomial) nonlinearities coupled with diffusive dissipation. The structure is given 
in (2.10), in which the transition is between adjacent zeros of the cubic, if we deal 
specifically with cubic nonlinearity and plane waves. Discussion of (2.10) (for 
example, in Whitham 1974, p. 31) invariably assumes that conditions on either side 
of the shock have been prescribed as corresponding to adjacent zeros. But if the shock 
represents a local transition in an evolving wave form, the zeros depend on 2. They 
are the signal levels on either side of 8 = B,(Z), say, as determined along the 
characteristics d8/dZ = p2 from the initial data f(0). For a unit N-wave f(S) the 
zeros corresponding to the tail shock are found (Lee-Bapty & Crighton 1986a) to be 
fi(Z) = l + O ( Z - i ) ,  f, = l + O ( Z - i ) z ,  f, = - 2 + O ( Z - $ )  near the range Z = a t  
which the tail shock is formed (the tail shock initially present being immediately 
relieved by the cubic nonlinearity). The Taylor shock (after a range lZ-+I = O(&) 
in which the embryo-shock dynamics are governed by the ordinary quadratic 
Burgers’ equation) provides a transition from f, to fz. At Z = 2, = 10, however, 
fz andf, coalesce, and iffi(Z) andf,(Z) continue to be taken from the initial data as 
the levels on either side of the shock for 2 > 2, then there is a singularity in the Taylor 
structure itself, because fi > f, > fz for Z > 2,. 

One might try to argue that some new mechanism should be introduced to resolve 
this singularity, or that the asymptotic analysis leading to this situation at 2, is 
incorrect. The first must be unnecessary, as the problem posed by (2 .9)  is well posed, 
and the second is denied by numerical results which confirm the final asymptotic 
scheme. What has happened a t  2, is that a characteristic and the shock path have 
touched (see figure 1). Iffl(Z) andf,(Z), as supplied by characteristics, are used to 
feed information to the shock for Z > Z , ,  then the picture is as in figure 1 (a), and 
is clearly unacceptable, not only because of the singular shock structure, but also 
because of the crossing of characteristics away from the shock path. 
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FIQURE 1. Shock path in (O,Z)-plane for cubic modified Burgers’ equation. (a)  T i s  the shock path, 
C the tangential characteristic, touching r a t  (O,, Z,) ,  2, = 10 for N-wave. Characteristics A,  B,, 
A ,  B, carry signalsf,(Z), f2(2) to the shock, but A ,  B,  crosses C away from the shock. Hence the 
picture shown is inadmissible for 2 > 2,. (b )  r touches C at (O,,2,) and turns above C to prevent 
characteristic crossing as in (a).  Characteristic A,  B, carries signal f , ( Z )  to the shock at B,. The 
signal at B, on the other side of the shock is given byf, = -ifl, and propagates away from B, along 
the refracted characteristic B, A,. No signal can reach the region between C and r and above 
(01, 2,) via characteristics from the initial data. All refracted characteristics such as B, A,  are 
tangential to the shock path. 

Two things are now necessary for an acceptable solution. First, fi + 2f2 2 0 in 
order that f 3  = - (fi + f 2 )  does not intrude between f, and f ,  and induce the shock 
singularity. Second, in order to avoid crossing of characteristics away from the shock, 
the shock must always turn t o  the left, as it were, above the tangent characteristic 
a t  any Z 2 Z, ,  as in figure 1 (6). This can be shown to require fi + 2f2 < 0. Consistency 
is achieved only if 

fI(Z) + 2f,(Z) = 0, z 2 2, (4.1) 
(where we assume f l  > f , ) .  

Clearly, we must now abandon the idea that information can be passed in the usual 
(gasdynamic) way from the initial line via characteristics to both sides of the shock, 
with the shock having just a passive role. Figure l ( 6 )  shows that for Z > Z, ,  
information, in the form off,(Z), comes along characteristics to the left of the shock, 
but that the shock now has an active role, supplying information to the lossless region 
to the right of the shock in the form of initial data fi(Z) for a new set of characteristics 
emanating from the shock. The shock amplitudes are related in the ratio 2 :  - 1 by the 
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condition (4.1), which freezes coalescence off, with f2 for all Z 3 2,. Since the slopes 
of the characteristics for the cubic Burgers’ equation are given by dO/dZ = q2,  the 
gradient in the (8,Z)-plane increases by a factor 4 and the characteristic is refracted 
in crossing the shock. All such refracted characteristics do, in fact, touch the shock 
curve. 

Eventually, for Z > 2, = 90 in the N-wave problem, the data refracted in this way 
through the tail shock become the source of information behind the head shock. No 
non-uniformity of significance is associated with this. The head shock remains 
described for finite Z by the Taylor form (2.11), but the head-shock amplitude a in 
(2.11) is now determined for 2 > 2, by data propagated along characteristics 
refracted by the tail shock, rather than directly from the initial data. A much more 
complicated finite-2 representation applies in the case of an initial sinusoidal wave 
condition for the cubic Burgers’ equation. Here there are repeated refractions as the 
characteristics pass through the periodic array of shocks. To find the lossless solution 
qo(8, 2) at any finite Z > 2, = 9.601 one has to trace the characteristic through (8,Z) 
back to the line Z = 0, with gradient change by the factor 4 and signal change by 
the factor ( -  2) each time one of the shock paths is crossed. A recursive means of 
doing this can be devised (Lee-Bapty & Crighton 1986a), and the results can be 
favourably compared with asymptotic estimates which show, for example, that 

We emphasize that all this relates to non-uniformities at finite Z which have to 
be resolved before large-2 non-uniformities can be addressed; also that only plane 
waves have so far been considered, for cubic nonlinearity. Wave-front area changes 
would not be expected to remove the difficulties just discussed, but higher-order 
nonlinearity (though perhaps not physically interesting at the moment) might lead 
to other non-uniformities arising from further or multiple coalescence of zeros of an 
nth order polynomial. 

For Z 2 Z , ,  with (4.1) imposed, there is exponential matching of the Taylor shock 
to the lossless solution on the left of the shock, algebraic on the right. (By Taylor 
shock here we mean (2.10) with zeros f,, f2, f2 on the right.) It is therefore not easy 
to see what the signal level just to the right of the shock is, but it is fair to claim 
that figures 11 and 12 of Lee-Bapty & Crighton (1986a) do indeed confirm, from a 
finite-difference solution of (2.9), that condition (4.1) does lock the shock signals in 
the 2 : - 1 ratio for Z 2 Z, ,  which is the critical issue that distinguishes this study from 
that of quadratic nonlinearity. Large-Z non-uniformities are less interesting ; they 
involve shock thickening, shock displacement and Taylor non-uniformity, much as 
for the generalized Burgers’ equations of Q 3. 

5. Other approaches 
The difficulties for both analytical and numerical attacks on generalized Burgers’ 

equations like (2.1) have been recognized for a long time, and numerous ingenious 
ad hoc methods devised to bridge the gap between the weak-shock-theory stage and 
the old-age stage (if it exists). These ad hoc methods (which often give remarkable 
correspondence of functional form with results from the matched-expansion scheme) 
have been discussed in detail in Nimmo & Crighton (1986, Q 10) and need no further 
comment here. It is, however, possible to make useful comparison of the predictions 
of the asymptotic scheme with numerical results. 
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Consider first cylindrical N-waves. These were first studied numerically by 
Sachdev & Seebass (1973) with a finite-difference scheme tested first against the exact 
solution for plane N-waves. The study concentrated on the ‘lobe Reynolds number ’, 
which in our notation would be 

If (2.5) is integrated from 0 to CO, and if i t  is assumed that the 
a unit N-wave can be used to  give aq/aI9 a t  0 = 0 as - l ( Z +  l ) ,  

lossless solution for 
then one finds 

Sachdev & Seebass compared an expression of essentially this form (with some 
numerical adjustment to  make R agree with their smoothed initial N-wave) with 
computed results and found excellent agreement at ranges up to  500 (in our units). 
Over these ranges IRI had changed by as much as a factor of 50. However, the value 
of E chosen was 5 x so that the largest ranges considered were only of the order 
of the range 2 = 6-l at which the global non-uniformity for cylindrical N-waves is 
predicted, and a significant effect on a q / M  at I9 = 0 would only be expected at still 
greater ranges. At those long ranges, where there is old-age decay, Crighton & Scott 
(1979, equation (3.36)) predict 

P C ( g )  e X P ( g ) >  (5.3) 

for I9 = O(1) and 2 9 e-l, with C an O(1) positive constant. The ratio of aq/a8 
at I9 = 0 from (5.3) to  its value - 1/(2+ 1 )  in the lossless solution is O ( E - ~ ~ - ~ ) ,  small 
in old age, and making (5.2) invalid there. 

Sachdev & Seebass also computed wave forms a t  various stages of the evolution. 
These show the expected spreading of the whole wave and thickening of the shock, 
and just encompass the beginnings of old age at the largest ranges, but there is 
insufficient detail to permit a comparison with (5 .3) .  

I n  recent work, Sachdev, Tikekar & Nair (1986) have greatly extended this work, 
using a pseudo-spectral approach in the initial stages where the waves are steep, and 
a finite-difference method later on. For cylindrical N-waves in the old-age phase they 
used a much larger value of E ,  E = 0.017, for which the global non-uniformity is to  
be expected around 2 = 59 (requiring, even so, the inversion of a 2500 x 2500 
matrix). They found that old age was attained a t  about 2 = 99, and that there the 
motion was very well described by (5.3) with C = 0.34 (giving a maximum amplitude 
of no more than of the initial amplitude). Leibovich & Seebass (1974, p. 122) 
argued that the (I9,Z) dependence in old age should be as given in (5.3). However, 
they were unable to determine the s-dependence, as their result involves as a factor 
the Reynolds number, whose dependence on E for large 2 cannot be found by 
arguments involving the lossless solution. It is, accordingly, an achievement of the 
matched-expansion approach that i t  is able to pin down everything in (5.3) save the 
numerical constant. Of course, final confirmation of the non-dependence of C on E 

will only come when the calculations of Sachdev et al. (1986) have been repeated for 
a range of values of E .  

Nonetheless, the agreement of numerical results with the (0, 2)-dependence of (5.3) 
is encouraging, and in contrast to work by Enflo (1981). He found a solution of the 
old-age linear equation of the form 

(5.4) 
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where the scalings are 

Z’ = €2, e‘ = ~ e ,  q(e’, z’, €1 - B q;(e/, z) + . . . , (5.5) 

y is written for P / Z f 2  and @ is the confluent hypergeometric function normally 
written lFl. Symmetry demands A,  = 0. The form (5.3) of Crighton & Scott (1979) 
corresponds to a: = 1,  which Enflo claims is not consistent with matching to the 
Taylor shock, preferring instead ct = $. He then attempts to  construct a solution to 
the full cylindrical Burgers’ equation, which in the present variables reads 

starting with the old-age solution. The f,(y) are determined recursively, and from 
their asymptotics for large y it is claimed that the old-age form holds wherever 
yZ’ = O(e-’) and that this allows matching to the Taylor shock, giving 

(5 .8)  C ,  = 1 - tanh (i) . 
This procedure was effectively carried out by Fay (1931) for plane waves; he was able 
to sum the series explicitly and obtain an exact solution (the Fay solution) to the 
plane Burgers’ equation, and from that, matching to the shock would indeed 
determine the old-age coefficient. No such summation was carried out by Enflo, 
however, and there is no possibility of matching a solution valid a t  large Z to one 
valid for Z = O( 1) without obtaining a more appropriate representation for 
2 = O(e-l) than is given by (5.7). Thus we are unable to agree with Enflo, and point 
out that numerical work firmly favours (5.3) rather than (5.7). Similar reservations 
apply to the application of these ideas to sinusoidal cylindrical waves and cylindrical 
N-waves from a supersonic projectile (Enflo 1985a, 3). 

With regard to the latter problem, however, there is an important point to be 
made. I n  the absence of stratification, the Taylor description of the shock profile fails 
over ‘ranges’ 2 = O(e-l) for a thermoviscous fluid, and for a more realistic model of 
the atmosphere incorporating molecular relaxation effects as the principal dissipative 
mechanism and also density stratification there is presumably a corresponding range. 
If this argument is relevant to sonic booms from supersonic aircraft, it  will be 
inappropriate to try to understand the rather large thickness (some tens of metres, 
at least one thousand times the Taylor thickness) in terms of fully developed shock 
structure. Explanation of these large thicknesses has long been a matter of 
controversy. 

As a final comment on cylindrical N-waves, Sachdev et al. (1986) calculated the 
shock centre and compared it with the prediction of Crighton & Scott (1979, equation 
3.243) for the shock displacement due to diffusivity. Good agreement was found out 
to about 2 = 30, again comparable with the range (e = 0.017 here) for global 
violation of ( A ) ,  (B)  and (C) of $3. Good agreement was also found between numerical 
results for spherical N-waves and the displacement prediction of Crighton & Scott 
(1979, equation 3.24 c). It is difficult to test the predictions of $ 3 for the non-uniformity 
leading to an evolutionary shock for spherical waves, and probably the best test is 
the old-age prediction 

(5.9) 
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and marks the onset of old age. For the E = 0.00431 used by Sachdev et al. (1986) 
for spherical waves they find 2, = 9.2. The global non-uniformity leading to old age 
involves the spreading of the evolutionary shock to a thickness comparable with the 
overall N-wave scale. This scale a t  range 2 is 24 (weak-shock theory places the shocks 
of a unit N-wave a t  +(Z+l)g) and the predicted thickness of the error-function 
shock a t  2, is €4 exp (2,/22,) = 3.03, so that the two are indeed comparable. 

Sachdev et al. find that old age ensues at about 2 = 11, and that thereafter the 
functional form of (5.9) agrees with numerical results over the whole wave very 
closely (to six decimal places!). The amplitude is not quite right, however; a factor 
0.67 is needed on the right of (5.9) to make the results coincide. We have checked 
(5.9) again and are unable to  offer any reason for this discrepancy. 

The overall features of the asymptotic scheme are thus quite well borne out by the 
available numerical results. These are, however, really insufficient, and further 
studies covering a range of values of E and 2, are definitely needed. Numerical studies 
for a different form of wave-front area variation are also needed; the diverging 
exponential horn is an obvious example, as it leads to a quite different type of 
long-range behaviour. 

6. Conclusions 
I n  this paper we have tried to describe the qualitative behaviour of nonlinear 

waves subject to geometrical wave-front area variations and to thermoviscous 
damping as they propagate over large ranges - and also the behaviour of plane waves 
(generally transverse, but possibly also longitudinal, as in Freon-13) with cubic or 
higher-order nonlinearity. Generalized or modified Burgers’ equations describe these 
waves, respectively, and they have a very rich asymptotic structure in the small 
damping limit considered here. This structure is even richer if one takes a particular 
geometry and initial condition (e.g. spherical waves of initially sinusoidal form) and 
examines all the possibilities in an ( E ,  2,)-plane (Scott 1981 b )  instead of taking 
2, = O( 1) or €2, = O( 1) as was implicitly done above. In  view of the proven absence 
of exact solutions by any of the methods developed in nonlinear wave theory 
(principally, but not exclusively, for dispersive rather than dissipative waves) a 
combination of asymptotic and numerical attacks is the only way forward. We 
believe that the asymptotic descriptions reported above - and in analytical detail in 
the papers cited - contain significant and interesting physics and are an indispensible 
precursor to numerical work, which so far seems adequately to confirm the 
asymptotics. 

Much further numerical work is really needed, as emphasized in $5 .  One can also 
expect to find new scenarios for wave evolution not revealed so far. For example, if 
the initial condition gives a single one-signed pulse, then for plane waves the 
Reynolds number remains constant and the wave remains inherently nonlinear. How 
such a wave behaves under increasing or decreasing wave-front area variations is 
interesting and will be reported elsewhere, as will the combined effects of relaxation 
and stratification on the cylindrical N-waves of the sonic-boom problem. At the heart 
of all such studies, of course, is the Taylor shock structure, or its analogue, in local 
form, and the central issue is whether that structure can persist indefinitely, or 
whether its balance is upset by rapid changes outside the shock. 



642 D .  G. Crighton 

It is a pleasure to acknowledge the debt I owe to my former students, Drs 
J. F. Scott, I. P. Lee-Bapty and J. J. C. Nimmo, for their contributions to  this work. 
The programme described in $3 was supported by the Science and Engineering 
Research Council under Grant GR/C/66701. 

R E F E R E N C E S  

BATCHELOR, G. K. & DAVIES, R. M. (eds.) 1956 Surveys in  Mechanics. The G. I .  Taylor 70th 

CRAMER, M. S. & KLUWICK, A. 1984 J. Fluid Mech. 142, $37. 
CRIGHTON, D. G. 1979 Ann. Rev. Fluid Mech. 11, 11-33. 
CRIGHTON, D. G. 1986 Basic theoretical nonlinear acoustics. In Frontiers in Physical Acoustics 

CRIGHTON, D. G. & SCOTT, J. F. 1979 Phil. Trans. R .  SOC. Lond. A 292, 101-134. 
ENFLO, B. 0. 1981 J .  Acoust. Soc. Am. 70, 1421-1423. 
ENFLO, B. 0. 1985a J. Acoust. SOC. Am. 77, 54-60. 
ENFLO, B. 0. 19853 A I A A  J .  23, 1824-1826. 
FAY, R. D. 1931 J. Acoust. SOC. Am.  3, 222-241. 
GORSCHKOV, K. A,, OSTROVSKY, L. A. & PELINOVSKY, E. N. 1974 Proc. IEEE 62, 1511-1517. 
LEE-BAPTY, I. P. & CRICHTON, D. G. 1986a Nonlinear wave motion governed by the Modified 

LEE-BAPTY, I. P. & CRICHTON, D. G. 19863 Propagation of nonlinear sinusoidal waves in a 

LEIBOVICH, S. & SEEBASS, A. R. (eds.) 1974 Nonlinear Waves. Cornell University Press. 
LIGHTHILL, M. J. 

NARIBOLI, G. A. & LIN, W. C. 1973 2. angew. Math. Mech. 53, 505-510. 
NAUGOL’NYKH, K. A. 1973 Sow. Phys. Acoust. 18, 475-477. 
NIMMO, J. J. C. & CRIGHTON, D. G. 1982 Proc. R .  SOC. Lond. A384, 381401.  
NIMMO, J. J. C. & CRICHTON, D. G. 1986 Geometrical and diffusive effects in nonlinear acoustic 

propagation over long ranges. Phil. Trans. R .  SOC. Lond. A 320, 1-35. 
RUDENKO, 0. V. & SOLUYAN, S. I .  1977 Theoretical Foundations of Nonlinear Acoustics (English 

translation by R. T. Beyer). New York: Consultants Bureau (Plenum). 
SACHDEV, P. L. & SEEBASS, A. R. 1973 J. Fluid Mech 58, 197-205. 
SACHDEV, P. L., TIKEKAR, V. G. & NAIR, K. R. C. 1986 Evolution and decay of spherical and 

SCOTT, J. F. 1981a Proc. R .  SOC. Lond. A373, 443-456. 
SCOTT, J. F. 1981b Proc. R. SOC. Lond. A375, 211-230. 
SUCIMOTO, N., YAMANE, Y. & KAKUTANI, T. 1982 In  Nonlinear Deformation Waves, IUTAM 

Symposium, Tallinn 1982 (ed. U .  Nigul & J. Engelbrecht), pp. 203-208. Springer. 
TAYLOR, G. I. 1910 Proc. R. SOC. Lond. A84,371-377. 
WHITHAM, G. B. 1974 Linear and Nonlinear Waves. Wiley-Interscience. 

Anniversary Volume. Cambridge University Press. 

(ed. D. Sette), pp. 1-52. North Holland. 

Burgers equation. Phil. Trans. R. Soc. Lond. (to appear). 

dissipative stratified atmosphere. Proc. R. SOC. Lond. (to be submitted). 

1956 In  Surveys in Mechanics (ed. G. K .  Batchelor & R. M. Davies), pp. 
256351.  Cambridge University Press. 

cylindrical N-waves. J. Fluid Mech. 172, 347-371. 




